Cookie Policy

Welcome to ASIF. This site uses cookies. Read our policy.

Learn more
asif left    

ASIF

ASI Supported Irradiation Facilities

ASI-ENEA-INFN agreements

(version 3.1.6)

asif right

In this page,  asif documentation is shown in different sections:

 

Displacement Damage, SR-NIEL, Electronic and Nuclear Stopping Power Treatments and TNID and TID Doses: Bibliography

 

 C. Baur, M. Gervasi, P. Nieminen, S. Pensotti, P.G. Rancoita, M. Tacconi, (2014) NIEL dose dependence for solar cells irradiated with electrons and protons, Proc. of the 14th ICATPP, September 23--27 2013, Villa Olmo, Como, Italy, S. Giani, C. Leroy, L. Price, P.G. Rancoita and R. Ruchti, Editors, World Scientific, Singapore, 698-713; ISBN: 978-981-4603-15-7;
http://www.worldscientific.com/doi/pdf/10.1142/9789814603164_0111
http://arxiv.org/abs/1312.0402

 

 

M.J. Boschini, C. Consolandi, M. Gervasi, S.Giani, D.Grandi, V. Ivanchenko and P.G. Rancoita, (2010). Geant4-based application development for NIEL calculation in the Space Radiation Environment, Proc. of the 11th ICATPP Conference, October 5-9 2009, Villa Olmo, Como, Italy, World Scientific, Singapore, 698-708, IBSN: 10-981-4307-51-3;
http://www.worldscientific.com/doi/pdf/10.1142/9789814307529_0113

   

 

M.J. Boschini, C. Consolandi, M. Gervasi, S. Giani, D. Grandi, V. Ivantchenko, S. Pensotti, P.G. Rancoita, M. Tacconi, (2011), Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particle from Low Energy up to relativistic regime in Space Radiation Environment, Proc. of the 12th ICATPP Conference, October 7-8 2010, Villa Olmo, Como, Italy, World Scientific, Singapore, 9-23, IBSN: 978-981-4329-02-6;
http://www.worldscientific.com/doi/pdf/10.1142/9789814329033_0002
http://arxiv.org/pdf/1011.4822v7.pdf

 

 

M.J. Boschini, C. Consolandi, M. Gervasi, S. Giani, D. Grandi, V. Ivanchenko, P. Nieminem, S. Pensotti, P.G. Rancoita and M. Tacconi, (2012), Nuclear and Non-Ionizing Energy-Loss of electrons with low and relativistic energies in materials and space environment, Proc. of the 13th ICATPP Conference, October 3-7 2011, Villa Olmo, Como, Italy, World Scientific, Singapore, 961-982, IBSN: 978-981-4405-06-5;
http://www.worldscientific.com/doi/pdf/10.1142/9789814405072_0147
http://arxiv.org/pdf/1111.4042v4.pdf

 

 

 M.J. Boschini, C. Consolandi, M. Gervasi, S. Giani, D. Grandi, V. Ivanchenko, P. Nieminem, S. Pensotti, P.G. Rancoita, M. Tacconi, (2013), An expression for the Mott cross section of electrons and positrons on nuclei with Z up to 118, Rad. Phys. Chem. 90, 39-66; doi: 10.1016/j.radphyschem.2013.04.020,
http://www.sciencedirect.com/science/article/pii/S0969806X13002454
http://arxiv.org/pdf/1304.5871v1.pdf

 

 

M.J. Boschini, C. Consolandi, M. Gervasi, S. Giani, D. Grandi, V. Ivanchenko, P. Nieminem, S. Pensotti, P.G. Rancoita, M. Tacconi (2013), An expression for the Mott cross section of electrons and positrons on nuclei with Z up to 118, Rad. Phys. Chem. 90, 39-66; doi: 10.1016/j.radphyschem.2013.04.020; http://www.sciencedirect.com/science/article/pii/S0969806X13002454; http://arxiv.org/pdf/1304.5871v1.pdf

 

 R. Campesato, C. Baur, M. Casale, M. Gervasi, E. Gombia, E. Greco, A. Kingma, P.G. Rancoita, D. Rozza, M. Tacconi (2018), NIEL DOSE and DLTS Analyses on Triple and Single Junction solar cells irradiated with electrons and protons, Proceedings of 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, Hawaii, June 10-15, 2018; Publication Year: 2018, p. 3768-3772, doi: 10.1109/PVSC.2018.8548237; available at https://arxiv.org/abs/1811.11583

 

 R. Campesato, C. Baur, M. Casale, M. Gervasi, E. Gombia, E. Greco, A. Kingma, P.G. Rancoita, D. Rozza, M. Tacconi (2018), Effects of irradiation on Triple and Single Junction InGaP/GaAs/Ge solar cells, Proceedings of the 35th European PV Solar Energy Conference, Brussels, 24-28 September 2018, 959-964, doi: 10.4229/35thEUPVSEC20182018-4CO.5.4; available at http://arxiv.org/abs/1809.07157 

 

 R. Campesato, C. Baur, M. Carta, M. Casale, D. Chiesa, M. Gervasi, E. Gombia, E. Greco, A. Kingma, M. Nastasi, E. Previtali, P.G. Rancoita, D. Rozza, E. Santoro, M. Tacconi (2019),  NIEL Dose Analysis on triple and single junction InGaP/GaAs/Ge solar cells irradiated with electrons, protons and neutrons, Proceedings of the 2019 IEEE 46th Photovoltaic Specialist Conference (PVSC), June 16-21 (2019), Chicago (USA), Book Series: IEEE Photovoltaic Specialists Conference, pages 2381-2384, doi: 10.1109/PVSC40753.2019.8980581; available at https://arxiv.org/abs/1911.08900

 

A.Colder, N.Croitoru, P.D’Angelo, M. De Marchi, G. Fallica, S. Leonardi, M. Levalois, S. Marcolongo, P. Marie, R. Modica, P.G. Rancoita and A. Seidman, Study of Radiation Effects on Bipolar Transistors, Nucl. Instr. and Meth. in Phys. Res. B 179 (2001), 397; doi: https://doi.org/10.1016/S0168-583X(01)00582-1
https://www.sciencedirect.com/science/article/pii/S0168583X01005821

 

C. Consolandi, P.D’Angelo, G. Fallica, R. Modica, R. Mangoni, S. Pensotti and P.G. Rancoita, (2006), Systematic Investigation of Monolithic Bipolar Transistors Irradiated with Neutrons, Heavy Ions and Electrons for Space Applications, Nucl. Instr. and Meth. in Phys. Res. B 252 (2006), 276, doi:10.1016/j.nimb.2006.08.018
http://www.sciencedirect.com/science/article/pii/S0168583X0600913X

 

Hancock, S., James, F., Movchet, J., Rancoita, P.G. and Van Rossum, L. (1983). Energy loss and energy straggling of protons and pions in the momentum range 0.7 to 115 GeV/c, Phys. Rev. A 28, 615--620; doi: https://doi.org/10.1103/PhysRevA.28.615

 

Hancock, S., James, F., Movchet, J., Rancoita, P.G. and Van Rossum, L. (1984). Energy-loss distributions for single particles and several particles in a thin silicon absorber, Nucl.Instr. and Meth. in Phys. Res. B 1, 16, doi: 10.1016/0168-583X(84)90472-5.

 

 

C. Leroy and P.G. Rancoita (2007), Particle Interaction and Displacement Damage in Silicon Devices operated in Radiation Environments Reports on Progress in Physics 70, 493-625, doi:10.1088/0034-4885/70/4/R0
http://iopscience.iop.org/0034-4885/70/4/R01/

 

 

 

C. Leroy and P.G. Rancoita (2011), Principles of Radiation Interaction in Matter and Detection - 3rd Edition -, World Scientific,
Singapore, ISBN-978-981-4360-51-7;
http://www.worldscientific.com/worldscibooks/10.1142/8200

 

 

 

 

C. Leroy and P.G. Rancoita (2012), Silicon Solid State Devices and Radiation Detection, World Scientific, Singapore, ISBN-978-981-4390-0-0;
http://www.worldscientific.com/worldscibooks/10.1142/8383.

 

 

 

  

9167.cover C. Leroy and P.G. Rancoita (2016), Principles of Radiation Interaction in Matter and Detection - 4th Edition -, World Scientific. Singapore, ISBN-978-981-4603-18-8 (printed); ISBN.978-981-4603-19-5 (ebook); it is also partially accessible via google books.




 

 

Rancoita, P.G. (1984). Silicon detectors and elementary particle physics, J. Phys. G: Nucl.Phys. 10, 299–319, doi:10.1088/0305-4616/10/3/007.

 

P.G.Rancoita and A.Seidman (1982), Silicon detectors in high energy physics : physics and applications, La Rivista del Nuovo Cimento vol.5, N.7, 1—75; doi: https://doi.org/10.1007/BF02740017

 

  

Methodology for Measurement of a neutron flux spectrum: Bibliography

 

A. Borio di Tigliole, A. Cammi, D. Chiesa, M. Clemenza, S. Manera, M. Nastasi, et al. 
TRIGA reactor absolute neutron flux measurement using activated isotopes. 
Progress in Nuclear Energy, vol. 70, pp. 249 – 255, 2014. DOI: 10.1016/j.pnucene.2013.10.001

 

D. Chiesa, M. Carta, V. Fabrizio, L. Falconi, A. Grossi, M. Nastasi, M. Palomba, S. Pozzi, E. Previtali, P. G. Rancoita, B. Ranghetti, M. Tacconi, Characterization of TRIGA RC-1 neutron irradiation facilities for radiation damage testing (2019),  available at https://arxiv.org/abs/1911.09374

 

D. Chiesa, M. Clemenza, M. Nastasi, S. Pozzi, E. Previtali, et al. 
Measurement and simulation of the neutron flux distribution in the TRIGA Mark II reactor core. 
Annals of Nuclear Energy, vol. 85, pp. 925 – 936, 2015. DOI: 10.1016/j.anucene.2015.07.011

 

D. Chiesa, M. Nastasi, C. Cazzaniga, M. Rebai, L. Arcidiacono, et al. 
Measurement of the neutron flux at spallation sources using multi-foil activation. Nuclear instruments and methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, vol. 902, pp. 14 – 24, 2018. DOI: 10.1016/j.nima.2018.06.016

 

D. Chiesa, E. Previtali, and M. Sisti. Bayesian statistics applied to neutron activation data for reactor flux spectrum analysis.
Annals of Nuclear Energy, vol. 70, pp. 157 – 168, 2014. DOI: 10.1016/j.anucene.2014.02.012

 

 

Methodology for determination of neutron spectra at the Fast Neutron Generator (FNG) facility at ENEA in Frascati: Bibliography

 

M. Pillon, M. Angelone, A. Krása, A. J. M. Plompen, P. Schillebeeckx, M.L. Sergi, Experimental response functions of a single-crystal diamond detector for 5–20.5 MeV neutrons, Nuc. Ins. and Meth. A 640(1), pp. 185-191 (2011),
DOI: 10.1016/j.nima.2011.03.005

 

 

Forecasting and transport of GCRs in heliosphere: Bibliography

HelMod Model bibliography

 

 

Magnetosphere transport models: Bibliography

GeoMagSphere Model bibliography

 

 

ESCIES radiation standards and guidelines: basic specifications

ESCC radiation test methods and guilines

 

 

ESCIES Radiation Environment and Effects Prediction / Calculation Tools

ESCC radiation tools

 

 

Cited Publications within ASIF Webpages

 

S. Bartocci, R. Battiston, W. J. Burger et al., Galactic Cosmic-Ray Hydrogen Spectra in the 40–250 MeV Range Measured by the High-energy Particle Detector (HEPD) on board the CSES-01 Satellite between 2018 and 2020, Astrophys. J. 901, 8; https://doi.org/10.3847/1538-4357/abad3e

 

S. Della Torre, G. Cavallotto, D. Besozzi, M. Gervasi, G. La Vacca, M. S. Nobile and P.G. Rancoita (2023), Advantages of GPU-accelerated approach for solving the Parker equation in the heliosphere, POS  (ICRC2023) 1290; https://pos.sissa.it/444/1290/pdf

 

ECSS (2020), on Space Environment: Technical Report ECSS-E-ST-10-04C Rev. 1 European Cooperation for Space Standardization;

https://ecss.nl/standard/ecss-e-st-10-04c-rev-1-space-environment-15-june-2020/

 

P. Jiggens, D. Heynderickx, I. Sandberg, P. Truscott, O. Raukunen and R. Vainio (2018). Updated Model of the Solar Energetic Proton Environment in Space, J. Space Weather Space Clim. 8: A31 (22pp);  https://doi.org/10.1051/swsc/2018010

 

K. W. Ogilvie, M. A. Coplan (1995). Solar wind composition, Rev. of Geophysics  33, pages 615-622; 

https://articles.adsabs.harvard.edu/pdf/1958ApJ...128..664P

 

A. Papaioannou, A. Anastasiadis, I. Sandberg and P. Jiggens (2018). Nowcasting of Solar Energetic Particle Events using near real-time Coronal Mass Ejection characteristics in the framework of the FORSPEF tool. J. Space Weather Space Clim. 8: A37 (14pp); https://doi.org/10.1051/swsc/2018024

 

E.N. Parker (1958). Dynamics of the Interplanetary Gas and Magnetic Fields, Astrophys. J. 128, 664;  

https://articles.adsabs.harvard.edu/pdf/1958ApJ...128..664P

 

E.N. Parker (1965). The passage of energetic charged particles through interplanetary space, Planetary and Space Science 13, Pages 9-49; 

https://doi.org/10.1016/0032-0633(65)90131-5

 

J. S. Rankin, D. J. McComas, R. A. Leske et al. (2022). Anomalous Cosmic-Ray Oxygen Observations into 0.1 au, Astrophys. J. 925, 9; https://doi.org/10.3847/1538-4357/ac348f

 

L.  Svalgaard and Y. Kamide (2013), ASYMMETRIC SOLAR POLAR FIELD REVERSALS, APJ 763:23 (6pp); http://dx.doi.org/10.1088/0004-637X/763/1/23

 

A. Vogt, B. Heber, A. Kopp, M. S. Potgieter and R. D. Strauss (2018). Jovian electrons in the inner heliosphere, Astr. and AstroPhys. 613:A28 (pp8); https://doi.org/10.1051/0004-6361/201731736

 

K. Whitman et al. (2023), Review of Solar Energetic Particle Prediction Models, Adv. in Space Research 72, Pages 5161-5242; 

https://doi.org/10.1016/j.asr.2022.08.006

 

Yihua Zheng and Rebekah M. Evans (2014).  Solar Energetic Particles (SEPs),;  

https://ccmc.gsfc.nasa.gov/RoR_WWW/SWREDI/2014/SEP_YZheng_20140602.pdf